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Terahertz- (THz-) based electron manipulation has recently been shown to hold tremendous promise as a technology for
manipulating and driving the next generation of compact ultrafast electron sources. Here, we demonstrate an ultrafast electron
diffractometer with THz-driven pulse compression. The electron bunches from a conventional DC gun are compressed by a
factor of 10 and reach a duration of ~180 fs (FWHM) with 10,000 electrons/pulse at a 1 kHz repetition rate. The resulting
ultrafast electron source is used in a proof-of-principle experiment to probe the photoinduced dynamics of single-crystal silicon.
The THz-compressed electron beams produce high-quality diffraction patterns and enable the observation of the ultrafast
structural dynamics with improved time resolution. These results validate the maturity of THz-driven ultrafast electron sources
for use in precision applications.

1. Introduction

Ultrafast electron sources have emerged as a powerful tool
for revealing structural dynamics in molecules and mate-
rials [1, 2]. They can capture the atomic structure of matter
and provide structural information on nonequilibrium
states of matter on the femtosecond time scale. Over the
past years, there has been great interest in achieving sub-
100-femtosecond (fs) time resolution with sufficient
brightness and repetition rate to enable a direct observa-
tion of the primary events governing physical and chemi-
cal processes [3–10]. The major challenge for generating
short electron bunches is to overcome the inherent
space-charge broadening effect. The main approaches have
been based on sacrificing bunch density to reduce space-
charge forces [9], shrinking the propagation distance,
increasing the electron energy [5, 10], or recompressing
the electron bunches with rebunching cavities [8, 11, 12].
Although operating in the single-electron or low-
electron-density regime avoids space-charge limits to the

time resolution [13, 14], it demands high repetition rates,
long exposure times, and high system stability to build a
statistically meaningful diffraction pattern. These con-
straints have prevented the widespread application of this
approach. A promising alternative is the use of a relativis-
tic (MeV) electron gun in combination with a postcom-
pressor powered by a radio-frequency (RF) cavity [6].
These devices can produce a higher charge and allow mea-
surements in a single shot, which is beneficial for reaching
the desired temporal resolution. However, the synchroni-
zation noise referred to as timing jitter has long been a
key issue limiting the overall time resolution to the hun-
dred fs regime when using RF fields for acceleration or
compression of the electron bunches [3, 4]. This has been
further improved by combining the RF electron gun with
achromatic bending magnetic for bunch compression [7,
15] that can produce sub-50 fs time resolution. However,
RF-based systems require complex and costly infrastruc-
ture that prevents their use by the general scientific com-
munity and, hence, limits the impact of this approach.
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It has been recently shown that laser-based terahertz
(THz) radiation-powered electron acceleration and manip-
ulation provides a promising solution for construction of
future ultrafast electron sources that support high energy,
high repetition rate short electron bunches while being
compact [16–20]. At millimeter-scale wavelengths, THz radi-
ation has been proven to enable GV/m field strength [21],
which is well-suited for subpicosecond electron beam manip-
ulation. THz-driven electron manipulation can also be used to
compress electron bunches to sub-100 fs duration without
intrinsic timing jitter [16–20]. By combining the THz-based
compressor with a conventional TEM, Ryabov and Baum
[22] have compressed electrons to about 80 fs with ~10 elec-
trons/pulse and demonstrated its application in probing the
electromagnetic field induced by the excitation laser on the
sample. Combining the advantages of this laser-based com-
pression approach with a compact, conventional DC electron
gun results in an ideal platform for building a compact elec-
tron source and diffractometer with a high repetition rate
and a temporal resolution beyond the current state of the art.

Here, we present the first demonstration of an ultrafast
electron diffractometer based on a THz-compressed elec-
tron source. The output of a DC gun was temporally com-
pressed using a multicycle THz-powered dielectrically
lined waveguide (DLW), resulting in a source with
~10,000 electrons/bunch in a duration of 180 fs (FWHM)
at a 1 kHz repetition rate. Direct measurement of THz
fields shows that the timing drifts were less than 5 fs
(RMS). The compressed beam was used to probe the
structural dynamics of single-crystal silicon demonstrating
high-quality diffraction patterns at improved temporal
resolution. These results pave the way for the practical
implementation of THz-powered ultrafast electron sources

in future developments of advanced ultrafast electron
diffractometers.

2. Materials and Methods

In the experimental setup shown in Figure 1, the electron
beam from a 53 keV phototriggered DC gun is compressed
by a multicycle THz-powered DLW device. Its pulse duration
is analyzed by a segmented terahertz electron accelerator and
manipulator (STEAM) device not shown for simplicity (see
Ref. [17]). Ultraviolet (UV) pulses for photoemission in the
DC gun, multicycle THz pulses to drive the DLW device,
single-cycle THz pulses to drive the STEAM device, and opti-
cal pump laser pulses for the sample excitation are all created
using a single, infrared Yb:KYW laser system producing 4mJ,
650 fs, and 1030nm pulses at a 1 kHz repetition rate. The UV
pulses are generated by two successive stages of second har-
monic generation (SHG), 50 ps long multicycle THz pulses
are generated by intraband difference frequency generation
in a 5mm long periodically poled lithium niobate (PPLN)
crystal, single-cycle THz pulses are generated via the tilted-
pulse-front method [23] in a LiNbO3 prism, and 515nm
pump pulses for the sample excitation are generated via
SHG inside the BBO crystal. The linearly polarized multi-
cycle THz beam is converted to a radially polarized beam
via a segmented waveplate with 8 segments. It is then coupled
into the DLW device collinearly to the electron propagation
using an off-axis-parabolic mirror and horn structure that
concentrated the THz field into the DLW. The DLW design
consists of a cylindrical copper waveguide of diameter
790μm and a dielectric layer of alumina (Al2O3, THz refrac-
tive index n = 3:25) with a wall thickness of 140μm.
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Figure 1: Experimental setup. A small fraction of the 1030 nm infrared optical beam is converted to 257 nm based on two-stage second
harmonic generation. The 257 nm UV pulse is directed onto a gold photocathode generating electron pulses, which are accelerated to
53 keV by the dc electric field. The same infrared laser also drives a multicycle THz generation stage, two single-cycle THz stages, and
pump laser for the DLW manipulator, the STEAM streaker, and sample excitation, respectively. The STEAM streaker and the sample are
on the same manipulator which can be exchanged for checking the pulse duration at the sample position or performing the ultrafast
electron diffraction (UED) experiment.
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For electron compression, 0.5mJ laser pulses are used for
multicycle THz generation, and the rest (3.5mJ) is used for
two single-cycle THz pulse generation setups and sample exci-
tation. The single-cycle pulses, centered at 300GHz, have an
energy of around 2 ∗ 3 μJ. They are injected into the STEAM
streak camera [17] for electron pulse duration characterization.

3. Results and Discussion

3.1. Electron Bunch Compression. For electron bunch com-
pression, we have chosen the DLW structure powered with
a long multicycle THz pulse [18], which provides a more
homogeneous field distribution and larger effective area
compared to the solutions based on the single-cycle THz
pulses [16, 17]. The cylindrical waveguide supports a travel-
ling transverse-magnetic waveguide mode (TM01 mode).
The dimensions (250μm vacuum radius and 140μm dielec-
tric thickness) and index of the dielectric material (THz
refractive index n = 3:25) are chosen to provide a phase
velocity of 0.43c at 0.26 THz, which matches the velocity of
the electrons and optimizes the device for electron-
manipulation functions. The DLW, which can be used for
multiple THz-based electron manipulations, supports a
TM01 mode whose transverse field distribution is shown in
Figure 2(a). For the longitudinal waveform, there are four
key phase points to note [18]: the positive and negative crests

of the waves, where the field gradient is minimized, and the
positive and negative “zero crossings” of the field, where the
field gradient is maximized. The positive and negative crests
correspond to deceleration and acceleration of the electron
bunch, respectively, but leave the bunch spatial and temporal
dimensions unchanged. At the “zero crossings” of the field,
where the longitudinal field gradient is maximized, the elec-
tron bunch experiences a combination of spatial and tempo-
ral reshaping. At the positive zero crossing, where the field
gradient is positive, the bunch becomes stretched in time
but focused in space, while at the negative zero crossing,
the bunch is temporally compressed but expands in space,
as described by the Panofsky–Wenzel theorem [24] that uses
Gauss’s law showing that longitudinal compressing and
decompressing fields are accompanied by transverse defocus-
ing and focusing fields, respectively.

In this work, we use the compression function of the
DLW, i.e., the electrons are positioned at the negative zero
crossing. Compression of the electron bunch is based on
“velocity bunching” [26], where the electric field imparts a
longitudinal, temporally varying energy gain resulting in a
velocity gradient that causes compression of the electron
bunch as it propagates. Specifically, the electron bunch expe-
riences acceleration at the tail and deceleration at the head
but no average energy gain. Due to the low phase velocity,
the on-axis field is largely suppressed with most of the field
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Figure 2: Electric field distribution. (a) Transverse cross-section of the longitudinal electric field distribution for the TM01 mode with 0.43c
phase velocity simulated with CST Microwave Studio [25]. The dielectric wall thickness is 140μm, and the vacuum channel diameter is
510μm. (b) The central lineout of the longitudinal electric field distribution in (a). (c, d) Transverse cross-section of the electric field
distribution at TM01 mode with 0.95c phase velocity and the central lineout of the field distribution. The dielectric wall thickness is
90μm, and the vacuum channel diameter is 510μm.
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present around the dielectric region of the waveguide
(Figure 2(b)). To optimize the compression, the diameter of
the injected electron beam is reduced by a solenoid and a pin-
hole to around 150μm with about 1 fC charge going through
the pinhole. The result is a more homogeneous spatial interac-
tion and, hence, better rebunching performance. Performance
of the buncher also improves with the energy of the injected
electrons. The faster electron bunches match higher THz
phase velocities that result in fields with a flatter distribution
and a higher peak value in the center (Figures 2(c) and 2(d)).

Compression of the bunch is shown in Figure 3(a). At
maximum compression, the electron bunch duration was
reduced by a factor of 10 to around 180 fs (FWHM) mea-
sured by the STEAM streaker. The STEAM streaker uses
the magnetic field of the THz to induce the transverse deflec-
tion of the electron beam [17]. When the electrons sweep the
zero crossing of the field, they experience a strong deflection
as a function of delay, enabling the measurement of the tem-
poral bunch profile by mapping it onto the spatial dimension
of a detector. The resultant temporal resolution is about 10 fs.
Due to its compactness, the device could be directly mounted
onto the UED sample manipulator ensuring the pulse dura-
tion was measured at the sample position. Varying the energy
and, hence, the peak field of the THz pulse allowed tuning of
the longitudinal location of the temporal focus to coincide
with the sample. As shown in simulations (Figure 3(b)), for
lower fields, the temporal focus is located beyond the target
position, while for stronger fields, the bunch focused before
the target. Analogously to optics, the tightness of the focusing
determines the size of the focus. Since the THz pulse energies
required to compress the bunch are much lower than what
was available, much shorter bunch durations can be achieved
simply by increasing the field strength (Figure 3(b)). The
mechanical design of the proof-of-principle setup, however,
was not optimized for minimizing the electron bunch dura-
tions, and the long distance between the buncher and sample
limited the pulse duration achievable.

To determine the timing stability of the system, the spa-
tial position of the electrons on the detector was monitored.
Variation in the timing between the electrons and the bunch-

ing field induce a net acceleration or deceleration in the
bunch which results in a delay relative to the streaking field.
Jitter in the time of arrival of the streaking field would have
a similar effect. These relative timing variations thenmanifest
themselves as spatial deflections on the detector. Figure 3(c)
shows the reconstructed relative timing jitter over the 5
minutes required for collection of one set of UED data. The
RMS deviation was less than 5 fs even in the absence of any
stabilization hardware. These timing fluctuations can be fur-
ther reduced by stabilizing the laser beam pointing and ther-
mal drifts of the system.

3.2. Ultrafast Electron Diffraction with THz-Powered
Rebuncher. To demonstrate the performance of the setup,
we measured the ultrafast (Debye-Waller) dynamics during
heating of a 35nm freestanding, single-crystalline silicon
sample. Figure 4(a) shows the high-quality diffraction signal
collected with 1 s exposure time. The slight distortion of the
visible diffraction pattern is mainly caused by misalignment
of the focusing solenoid which can be eliminated by upgrad-
ing the setup to provide motorization of the solenoid posi-
tion. The sample is photoexcited with 515nm laser pulses
at a fluence of around 5mJ/cm2, well below the damage
threshold. The recovered structural dynamics is shown in
Figure 4(b). The exponential fit of τ = 1 ± 0:2 ps is slightly
longer than previous measurements (0.88 ps) [4] which is
mainly due to the pulse duration of the pump laser (~0.5ps)
that limits the overall system temporal resolution. The dynam-
ics measured with the uncompressed electron beam shows a
much longer decay time which is limited by the duration of
the uncompressed electron bunch (Figure 3(a)). More dra-
matic improvement is also expected for studying other sam-
ples with faster structural dynamics like Bi [7, 15], Sb [27],
and VO2 [28], with a shorter excitation laser.

The results shown here can be straight forwardly
improved upon in several ways. Most important we should
reduce the electron bunch duration, in order to improve the
temporal resolution, and increasing the electron bunch
energy, which is needed to enable study of samples which
are thicker [5] or are in the gas phase. The first can be done
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Figure 3: Compression of electron bunch and system timing jitter. (a)Measured (red square) and simulated (black line) electron bunch length as
a function of the applied THz field in the compression mode. The field strength of the experimental result is obtained by fitting the measured
compression results with the simulated values. (b) Simulated bunch length along the propagation direction with different longitudinal THz
field strength. (c) Measured timing jitter between the zero crossing of the longitudinal THz electric field and the laser pulses. The measured
timing jitter of about 3.8 fs RMS deviations reveals the excellent longer-term stability of the setup without any active stabilization.
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by reducing the duration of the UV photoemission pulse, for
example, by implementing an optical parametric amplifier or
waveform synthesizer [29]. The second can be done by
implementing an additional THz-powered module for accel-
eration, as previously demonstrated [30]. Adding an acceler-
ator also improves the bunch duration. In this configuration,
both modules can contribute to the bunch compression. The
first module compresses the bunch into the second booster
stage in order to limit emittance growth and increases in
energy spread [30]. By limiting the intermodule distance to
10mm, stronger THz fields can be applied in the buncher
to bring the electron bunch duration significantly below
100 fs (Figure 5). In addition, by adjusting the injection phase
in the second module slightly away from the crest, a negative
energy-chirp can be applied on the accelerated electron
bunch, allowing further compression via velocity bunching.
In this more optimized design, electron energies near
0.5MeV (Figure 5(a)) and bunch durations below 30 fs
(Figure 5(b)) are simultaneously achieved at the target
position.

4. Conclusion

We have demonstrated ultrafast electron diffraction with
electron bunches from a DC electron gun compressed by a
THz-driven rebunching DLW. At present, 180 fs (FWHM)
electron bunches with about 1 fC at 1 kHz repetition rate
have been achieved, showing high-quality diffraction pat-
terns for ultrafast structural dynamics studies. This is a dra-
matic improvement in instrument performance compared
to other compact low-energy DC electron guns, where time
resolution was improved by limiting the bunch charge or rep-
etition rate. Here, we have demonstrated that for a DC gun
with a THz-powered compression stage, high-quality diffrac-
tion patterns can be collected at kHz repetition rates that
show a potential solution for future compact UED setups
with improved temporal resolution. By implementing addi-
tional components and improvements which have already
been demonstrated, this technology can be used to achieve
performance significantly beyond the state of the art in a
package that is both compact and economical. A highly
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Figure 4: Ultrafast electron diffraction on silicon. (a) Electron diffraction images of 35 nm single-crystalline silicon with a face-centered cubic
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versatile THz-based UED setup providingMeV and sub-30 fs
bunches with 10 fC of charge at kHz repetition rates can thus
be expected in the near future. Such a device represents a sig-
nificant step towards providing the ultrafast scientific com-
munity with an accessible tool for studying structural
dynamics at the atomic scale.
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